
The base for this assignment was very similar to the lab, so I was able to reuse a lot of the code 

I had written for the lab, and also reuse the exact same concepts as well. The differences started in 

having to do subclasses. I didn't realize until I was nearly done with the assignment that I was actually 

using polymorphism, and so that actually through me off a bit as I tried to make everything work. I 

kept having an error that the child function was not a member of the parent function, which it obviously

isn't, but I didn't know I had to declare the child functions as virtual in the parent class. So in trying to 

fix that, I made my lists into arrays of pointers that pointed to other pointers in order to make an array 

of parent class with data that was of the subclasses. Once I fixed this, it all worked fairly well.

After that there was just some fine tuning to do, there were a few seg faults and the function to 

add another spot to the end of the array didn't copy stuff over right, I realized that when I was deleting 

the new list and moving stuff to the temporary one, I was deleting the data when I just needed to delete 

the pointer. I tried all the other functions and they worked, And I made input validation simple by just 

using utility functions for getting valid doubles and Ints. Because most the rest if my program runs on 

if/else statements, simply adding a “not valid option” the end if the user didn't enter a valid character 

for what to do worked as well.

I decided not to double the array when it was full for a couple of reasons. I already had most the

code for just adding an extra spot every time. And also, if the array is massive, like it could be int this 

program, holding hundreds of cars, then doubling it could take up lots of storage. If the list was 40 GB 

then double the array would make the list 80 GB, and what if it's just to put a single other vehicle in? 

For the buying of cars, I didn't worry about taxes since Oregon doesn't charge taxes on vehicle 

purchases. I didn't know if Professor Rooker realized this, but it made it fairly easy. Other than that I 

just made it take in some stuff for subtracting from the price, and then deciding if you want to make 

payments.

For testing I tested adding vehicles to both arrays, entering unsatisfactory values for all, and 

then testing the different functions, such as searching for both a make or a price range, displaying both 

lists, buying and removing vehicles. If you enter the wrong character on most inputs, it will just kick 

you back to the prompt page, which I think is alright, as otherwise it would require a lot of while loops,

and it doesn't take that long to get to wherever you were in the menu structure.

For a design plan, The last exercise was about designing the program, so I really just used that 

and followed it fairly accurately for designing the classes. I've attached the exercise.








