ECE 375 Lab 5
Large Number Arithmetic
Lab Time: Tuesday 5-7pm
Bianca Beauchamp

Drake Vidkjer
Introduction

In this lab we worked on multi-byte addition by implementing 16 bit addition, multi-byte subtraction by implementing 16 bit subtraction, multibyte multiplication by implementing 24 bit multiplication and a compound function that evaluates an expression using the addition, subtraction and multiplication all at once. The order in which we did this lab made it easier because once the addition was understood, the subtraction and multiplication were easier to understand and implement because the use addition in order to do the operations.
Program Overview
In All the Arithmetic functions written, the first things the functions do is store any values in the registers to be used onto the stack, and then when the function is finished it places those values back into their respective registers. After pushing the values the program loads the inputs from program memory and locates the output memory address.
ADD16

ADD16 takes in two 16 bit numbers and outputs a 24 bit result. First it loads the two inputs from program memory and then adds the first byte of each number; it then adds the second byte of each number and the carry if any from the first addition. Finally it places the carry of the second addition operation into the last byte of the result.
SUB16

SUB16 starts similar to ADD16 in that it loads the two inputs from program memory. It then performs a subtraction operation on the lower bytes of the inputs, and then does a subtract with carry on the higher bytes. If there is another carry, then it adds the carry to the higher byte.

MUL24

MUL24 first loads the two inputs from program memory. It then goes into a sequence of nested loops which multiplies the two inputs byte by byte. It does this by first multiplying the two numbers and then storing any carry in the next output byte. It does this three times, once for each byte.

Compound
The Compound function does just as the description says; it performs the arithmetic described in the function provided. For each operation it loads the data from memory and places it in the correct program memory location and then calls the function needed for that arithmetic operation.
Additional Questions

1. The V flag is the two’s complement overflow indicator. An example of two 8-bit binary values that will cause the V flag to be set are -5 and 15 because when you add these two two’s complement numbers, the carry overflows.
2. The .BYTE command allocates memory in data memory and allows the programmer to refer to that location with a user defined name. This is beneficial because it makes it easy to keep track of memory locations by adding all of the previous bytes declared to the specified starting location to determine the starting location of any of the defined names.
Difficulties

One major difficulty was with trying to create a standard format of what to do at the beginning and end of each function based on the skeleton code given as well as the ADD16 that was provided as a challenge in a previous Lab assignment. Using a combination of both of these, we were able to come up with a general form for storing previous numbers, loading data, and restoring numbers that could be used in each function.

Another difficulty was when trying to simulate the program. The data allocation for the skeleton code seems to start allocating program memory for variables too soon, and so in writing the program it seems to overwrite and interfere with those allocated bytes. This was a major source of frustration while attempting to check the program though the simulator.
Conclusion

In this lab we created multiple functions each performing some sort of large number arithmetic. We used our knowledge and examples of smaller implementations to write these functions to be able to perform operations no found natively in the AVR assembly code. We built 16 bit addition, and subtraction programs, as well as a 24 bit multiplication program. Finally, we wrote a subroutine that used all of these functions to perform a complex mathematical formula.
Source Code

;***

;*

;*
main.asm

;*

;*
Large number arithmetic functions

;*

;*
This is the skeleton file for Lab 5 of ECE 375

;*

;***

;*

;*
 Author: Drake Vidkjer

;*
 Author: Bianca Beauchamp

;*
 Date: 07/02/17

;*

;***

.include "m128def.inc"

; Include definition file

;***

;*
Internal Register Definitions and Constants

;***

.def
mpr = r16

; Multipurpose register

.def
rlo = r0

; Low byte of MUL result

.def
rhi = r1

; High byte of MUL result

.def
zero = r2

; Zero register, set to zero in INIT, useful for calculations

.def
A = r3

; A variable

.def
B = r4

; Another variable

.def
oloop = r17

; Outer Loop Counter

.def
iloop = r18

; Inner Loop Counter

;***

;*
Start of Code Segment

;***

.cseg

; Beginning of code segment

;---

; Interrupt Vectors

;---

.org
$0000

; Beginning of IVs

rjmp
INIT

; Reset interrupt

.org
$0046

; End of Interrupt Vectors

;---

; Program Initialization

;---

INIT:

; The initialization routine

ldi

mpr, low(RAMEND)

out

SPL, mpr

ldi

mpr, high(RAMEND)

out

SPH, mpr

; Initialize Stack Pointer

; Init the 2 stack pointer registers

clr

zero

; Set the zero register to zero, maintain

; these semantics, meaning, don't

; load anything else into it.

;---

; Main Program

;---

MAIN:

; The Main program

; Setup the ADD16 function direct test

; (IN SIMULATOR) Enter values 0xA2FF and 0xF477 into data

; memory locations where ADD16 will get its inputs from

; (see "Data Memory Allocation" section below)

; Call ADD16 function to test its correctness

; (calculate A2FF + F477)

rcall ADD16

; Observe result in Memory window

; Setup the SUB16 function direct test

; (IN SIMULATOR) Enter values 0xF08A and 0x4BCD into data

; memory locations where SUB16 will get its inputs from

; Call SUB16 function to test its correctness

; (calculate F08A - 4BCD)

rcall SUB16

; Observe result in Memory window

; Setup the MUL24 function direct test

; (IN SIMULATOR) Enter values 0xFFFFFF and 0xFFFFFF into data

; memory locations where MUL24 will get its inputs from

; Call MUL24 function to test its correctness

; (calculate FFFFFF * FFFFFF)

rcall MUL24

; Observe result in Memory window

; Call the COMPOUND function

rcall COMPOUND

; Observe final result in Memory window

DONE:
rjmp
DONE

; Create an infinite while loop to signify the

; end of the program.

;***

;*
Functions and Subroutines

;***

;---

; Func: ADD16

; Desc: Adds two 16-bit numbers and generates a 24-bit number

;

where the high byte of the result contains the carry

;

out bit.

;---

ADD16:

clr

zero

push
A

push
B

; Load beginning address of first operand into X

ldi

XL, low(ADD16_OP1)
; Load low byte of address

ldi

XH, high(ADD16_OP1)
; Load high byte of address

; Load beginning address of second operand into Y

ldi

YL, low(ADD16_OP2)
; Load low byte of address

ldi

YH, high(ADD16_OP2)
; Load high byte of address

; Load beginning address of result into Z

ldi

ZL, low(ADD16_Result)

ldi

ZH, high(ADD16_Result)

; Execute the function

;add first byte

ld

A, X+

ld

B, Y+

add

A, B

st

Z+, A

;add second byte

ld

A, X

ld

B, Y

adc

B, A

st

Z+, B

;store carry in last byte

brcc
EXIT

st

Z, XH

;clear carry bit

pop

B

pop

A

clc

EXIT:

ret

; End a function with RET

;---

; Func: SUB16

; Desc: Subtracts two 16-bit numbers and generates a 16-bit

;

result.

;---

SUB16:

clr zero

push A

push B

; Load beginning address of first operand into X

ldi

XL, low(SUB16_OP1)
; Load low byte of address

ldi

XH, high(SUB16_OP1)
; Load high byte of address

; Load beginning address of second operand into Y

ldi

YL, low(SUB16_OP2)
; Load low byte of address

ldi

YH, high(SUB16_OP2)
; Load high byte of address

; Load beginning address of result into Z

ldi

ZL, low(SUB16_Result)

ldi

ZH, high(SUB16_Result)

; Execute the function here

;sub low byte

ld

A, X+

ld

B, Y+

sub

A, B

st

Z+, A

;sub high byte

ld

A, X

ld

B, Y

sbc

A, B

st

Z, B

clr

A

adc

A, A

st

Z, A

pop

B

pop

A

;clear carry bit

clc

ret

; End a function with RET

;---

; Func: MUL24

; Desc: Multiplies two 24-bit numbers and generates a 48-bit

;

result.

;---

MUL24:

push
A

; Save A register

push
B

; Save B register

push
rhi

; Save rhi register

push
rlo

; Save rlo register

push
zero

; Save zero register

push
XH

; Save X-ptr

push
XL

push
YH

; Save Y-ptr

push
YL

push
ZH

; Save Z-ptr

push
ZL

push
oloop

; Save counters

push
iloop

clr

zero

; Maintain zero semantics

; Set Y to beginning address of B

ldi

YL, low(addrB)
; Load low byte

ldi

YH, high(addrB)
; Load high byte

; Set Z to begginning address of resulting Product

ldi

ZL, low(LAddrP)
; Load low byte

ldi

ZH, high(LAddrP); Load high byte

ldi oloop, 3

MUL24_OLOOP:

ldi iloop, 3

MUL24_ILOOP:

ld

A, X+

; Get byte of A operand

ld

B, Y

; Get byte of B operand

mul

A, B

; Multiply A and B

ld

A, Z+

; Get a result byte from memory

ld

B, Z+

; Get the next result byte from memory

add

rlo, A

; rlo <= rlo + A

adc

rhi, B

; rhi <= rhi + B + carry

ld

A, Z+

; Get a third byte from the result

adc

A, zero

; Add carry to A

clr

B

ld

B, Z

;add carry to Z

adc

B, zero

st

Z, B

st

-Z, A

st

-Z, rhi

st

-Z, rlo

adiw
ZH:ZL, 1

; Z <= Z + 1

dec

iloop

; Decrement counter

brne
MUL24_ILOOP

; Loop if iLoop != 0

; End inner for loop

sbiw
ZH:ZL, 2

; Z <= Z - 2

adiw
YH:YL, 1

; Y <= Y + 1

sbiw
XH:XL, 3

; X <= X - 3

dec

oloop

; Decrement counter

brne
MUL24_OLOOP

; Loop if oLoop != 0

; End outer for loop

; Restore variable by popping them from the stack in reverse order

pop

iloop

pop

oloop

pop

ZL

pop

ZH

pop

YL

pop

YH

pop

XL

pop

XH

pop

zero

pop

rlo

pop

rhi

pop

B

pop

A

ret

; End a function with RET

; Execute the function here

ret

; End a function with RET

;---

; Func: COMPOUND

; Desc: Computes the compound expression ((D - E) + F)^2

;

by making use of SUB16, ADD16, and MUL24.

;

;

D, E, and F are declared in program memory, and must

;

be moved into data memory for use as input operands.

;

;

All result bytes should be cleared before beginning.

;---

COMPOUND:

; Setup SUB16 with operands D and E

ldi

ZL, low(OperandD << 1)

ldi

ZH, high(OperandD << 1)

ldi

YL, low(SUB16_OP1)

ldi

YH, high(SUB16_OP1)

lpm

mpr, Z+

st

Y+, mpr

lpm

mpr, z

st

Y, mpr

ldi

ZL, low(OperandE << 1)

ldi

ZH, high(OperandE << 1)

ldi

YL, low(SUB16_OP2)

ldi

YH, high(SUB16_OP2)

lpm

mpr, Z+

st

Y+, mpr

lpm

mpr, z

st

Y, mpr

; Perform subtraction to calculate D - E

rcall SUB16

; Setup the ADD16 function with SUB16 result and operand F

; Setup SUB16 with operands D and E

ldi

ZL, low(OperandF << 1)

ldi

ZH, high(OperandF << 1)

ldi

YL, low(ADD16_OP1)

ldi

YH, high(ADD16_OP1)

lpm

mpr, Z+

st

Y+, mpr

lpm

mpr, z

st

Y, mpr

ldi

ZL, low(OperandE << 1)

ldi

ZH, high(OperandE << 1)

ldi

YL, low(ADD16_OP2)

ldi

YH, high(ADD16_OP2)

lpm

mpr, Z+

st

Y+, mpr

lpm

mpr, z

st

Y, mpr

; Perform addition next to calculate (D - E) + F

rcall ADD16

; Setup the MUL24 function with ADD16 result as both operands

ldi

ZL, low(LAddrP)

ldi

ZH, high(LAddrP)

ldi

YL, low(addrB)

ldi

YH, high(addrB)

ldi

XL, low(addrA)

ldi

XH, high(addrA)

; Loading the answer into both inputs and zeroing answer memory

ld

mpr, Z

st

Z+, zero

st

Y+, mpr

st

X+, mpr

ld

mpr, Z

st

Z+, zero

st

Y+, mpr

st

X+, mpr

ld

mpr, Z

st

Z+, zero

st

Y, mpr

st

X, mpr

; Perform multiplication to calculate ((D - E) + F)^2

rcall MUL24

ret

; End a function with RET

;---

; Func: MUL16

; Desc: An example function that multiplies two 16-bit numbers

;

A - Operand A is gathered from address $0101:$0100

;

B - Operand B is gathered from address $0103:$0102

;

Res - Result is stored in address

;

$0107:$0106:$0105:$0104

;

You will need to make sure that Res is cleared before

;

calling this function.

;---

MUL16:

push
A

; Save A register

push
B

; Save B register

push
rhi

; Save rhi register

push
rlo

; Save rlo register

push
zero

; Save zero register

push
XH

; Save X-ptr

push
XL

push
YH

; Save Y-ptr

push
YL

push
ZH

; Save Z-ptr

push
ZL

push
oloop

; Save counters

push
iloop

clr

zero

; Maintain zero semantics

; Set Y to beginning address of B

ldi

YL, low(addrB)
; Load low byte

ldi

YH, high(addrB)
; Load high byte

; Set Z to begginning address of resulting Product

ldi

ZL, low(LAddrP)
; Load low byte

ldi

ZH, high(LAddrP); Load high byte

; Begin outer for loop

ldi

oloop, 2

; Load counter

MUL16_OLOOP:

; Set X to beginning address of A

ldi

XL, low(addrA)
; Load low byte

ldi

XH, high(addrA)
; Load high byte

; Begin inner for loop

ldi

iloop, 2

; Load counter

MUL16_ILOOP:

ld

A, X+

; Get byte of A operand

ld

B, Y

; Get byte of B operand

mul

A,B

; Multiply A and B

ld

A, Z+

; Get a result byte from memory

ld

B, Z+

; Get the next result byte from memory

add

rlo, A

; rlo <= rlo + A

adc

rhi, B

; rhi <= rhi + B + carry

ld

A, Z

; Get a third byte from the result

adc

A, zero

; Add carry to A

st

Z, A

; Store third byte to memory

st

-Z, rhi

; Store second byte to memory

st

-Z, rlo

; Store third byte to memory

adiw
ZH:ZL, 1

; Z <= Z + 1

dec

iloop

; Decrement counter

brne
MUL16_ILOOP

; Loop if iLoop != 0

; End inner for loop

sbiw
ZH:ZL, 1

; Z <= Z - 1

adiw
YH:YL, 1

; Y <= Y + 1

dec

oloop

; Decrement counter

brne
MUL16_OLOOP

; Loop if oLoop != 0

; End outer for loop

pop

iloop

; Restore all registers in reverves order

pop

oloop

pop

ZL

pop

ZH

pop

YL

pop

YH

pop

XL

pop

XH

pop

zero

pop

rlo

pop

rhi

pop

B

pop

A

ret

; End a function with RET

;***

;*
Stored Program Data

;***

; Enter any stored data you might need here

OperandD:

.DW
0xFD51

; test value for operand D

OperandE:

.DW
0x1EFF

; test value for operand E

OperandF:

.DW
0xFFFF

; test value for operand F

;***

;*
Data Memory Allocation

;***

.dseg

.org
$0170

; data memory allocation for MUL16 example

addrA:
.byte 3

addrB:
.byte 3

LAddrP:
.byte 6

; Below is an example of data memory allocation for ADD16.

; Consider using something similar for SUB16 and MUL24.

;.org
$0110

; data memory allocation for operands

ADD16_OP1:

.byte 2

; allocate two bytes for first operand of ADD16

ADD16_OP2:

.byte 2

; allocate two bytes for second operand of ADD16

;.org
$0120

; data memory allocation for results

ADD16_Result:

.byte 3

; allocate three bytes for ADD16 result

;.org
$0138

; data memory allocation for operands

SUB16_OP1:

.byte 2

; allocate two bytes for first operand of ADD16

SUB16_OP2:

.byte 2

; allocate two bytes for second operand of ADD16

;.org
$0148

; data memory allocation for results

SUB16_Result:

.byte 2

; allocate 2 bytes for SUB16 result

;***

;*
Additional Program Includes

;***

; There are no additional file includes for this program
	
	Page 10
	

	
	
	

