
CS261: HOMEWORK 3
Due 04/22/2016

Submit three files via the TEACH website:

https://secure.engr.oregonstate.edu:8000/teach.php?type=want_auth

General Instructions
This homework assignment consists of 2 parts, and will be graded for a total of 100 points. The points

for each part are indicated at the beginning of the corresponding section in this writeup. For both part 1
and part 2, you are provided with header and implementation files. The implementation files should be
completed without changing the existing content. If you have any questions regarding HW3, please email
cs261-001-sp16@engr.orst.edu.

What to turn in
You should submit the following THREE completed files ALL AT THE SAME TIME:
• list.c

• listbag.c

• cirListDeque.c

Please use this file-naming convention. Make sure your code compiles with our makefile on the network
server. We have zero tolerance for compiling errors. Try to compile on flop.engr.oregonstate.edu.

Design a number of test examples to thoroughly check for any errors in your code. For this purpose,
we provide main deque.c and main bag.c files, which you should extend with more tests.

Part 1 – 50pts : Deque as Circularly-Doubly-Linked List
In this assignment, you will complete the implementation of a deque with Circularly-Doubly-Linked

List with a sentinel. The list is circular, because the end points back to the beginning. Therefore, just
one sentinel suffices. The sentinel is a special link, does not contain a value, and should not be removed.
Using a sentinel makes some linked list operations easier and cleaner in implementation.

The header file and the implementation file, provided to you for this approach, are cirListDeque.h

and cirListDeque.c, respectively. Some functions in the implementation (cirListDeque.c) have been
completed. The comments for each function will help you understand what each function should be
doing. Complete the remaining functions in cirListDeque.c. DO NOT change the provided functions
and header files.

Provided Files for Part 1:

• cirListDeque.h

• cirListDeque.c



Scoring for Part 1:

1) void initCirListDeque (struct cirListDeque *q) = 2pts
2) struct DLink * createLink (TYPE val) = 2pts
3) void addLinkAfter(struct cirListDeque *q, struct DLink *lnk, struct DLink *newLnk)

= 4pts
4) void addBackCirListDeque (struct cirListDeque *q, TYPE val) = 4pts
5) void addFrontCirListDeque(struct cirListDeque *q, TYPE val) = 4pts
6) TYPE frontCirListDeque(struct cirListDeque *q) = 2pts
7) TYPE backCirListDeque(struct cirListDeque *q) = 2pts
8) void removeLink(struct cirListDeque *q, struct DLink *lnk) = 5pts
9) void removeFrontCirListDeque (struct cirListDeque *q) = 5pts

10) void removeBackCirListDeque(struct cirListDeque *q) = 5pts
11) void freeCirListDeque(struct cirListDeque *q) = 2pts
12) int isEmptyCirListDeque(struct cirListDeque *q) = 2pts
13) void printCirListDeque(struct cirListDeque *q) = 5pts
14) void reverseCirListDeque(struct cirListDeque *q) = 6pts

Part 2 – 50pts : List Bag with Recursions
The linked list implementation of a bag that we have discussed in class is an iterative version, in that

the operations such as contains() and remove() are realized with iterative loops. An alternative is to
implement these functions recursively.

Recall that recursion is used to implement the divide-and-conquer strategy, where the goal is to call
the function itself, with smaller versions of the problem. For contains(), the recursive implementation
is quite straightforward. The idea is to recursively call contains() each time with a smaller part of the
list, where the base case is when the list contains only the sentinel. In the case of contains(), there is
no ‘rebuilding’ upon return, it simply returns true or false.

The recursive remove() can also be implemented using the divide-and-conquer approach. In this case,
the recursive process would operate on smaller lists, and re-build the list upon returning from the recursion.
Specifically, the initial recursive call gets the entire list. If the element is not found in the front of the
list, then the the list is broken into the current link being observed, and the rest of the list. The current
link’s next is then set to the result of the recursive call on the rest of the list.

For this assignment, you are provided with the two header files and the two implementation files
type.h, listbag.h, list.c and listbag.c, respectively. The goal is to implement all functionalities
of a bag using the existing functions in list.c and listbag.c. Do not “invent the wheel”, but re-use
existing functions, or functions that you have already written, as much as possible. For example, if you
already have a function that initializes a general linked list, then you can immediately use a call to that
function to initialize a bag. Some functions in the implementation files (list.c and listbag.c) have
been completed. The comments for each function will help you understand what each function should be
doing. Complete the remaining functions in both list.c and listbag.c. DO NOT change the provided
functions and header files. Make sure that you implement the operations contains(), and remove()

as recursive procedures using the divide-and-conquer approach. No partial credit will be given for any
alternative implementation. Design a number of test examples to thoroughly check for any errors in your
code.

2 / 3



Provided Files for Part 2:

• type.h

• listbag.h

• list.c

• listbag.c

Scoring for Part 2:

1) void initList (struct list *lst) = 2pts
2) void addLink(struct list *lst, struct DLink *lnk, TYPE v) = 2pts
3) void addFrontList(struct list *lst, TYPE e) = 2pts
4) void addBackList(struct list *lst, TYPE e) = 2pts
5) TYPE frontList (struct list *lst) = 2pts
6) TYPE backList(struct list *lst) = 2pts
7) void removeLink(struct list *lst, struct DLink *lnk) = 4pts
8) void removeFrontList(struct list *lst) = 2pts
9) void removeBackList(struct list *lst) = 2pts

10) int isEmptyList(struct list *lst) = 2pts
11) int contains recursive(struct list *lst, struct DLink* current, TYPE e) = 6pts
12) void remove recursive(struct list *l, struct DLink* current, TYPE e, int* sz) = 8pts
13) void listRemove (struct list *lst, TYPE e) = 2pts
14) void freeList(struct list *lst) = 2pts
15) void addToBag(struct bag* b, TYPE val) = 2pts
16) void removeFromBag(struct bag* b, TYPE val) = 2pts
17) int bagContains(struct bag* b, TYPE val) = 2pts
18) int isEmptyBag(struct bag* b) = 2pts
19) void freeBag(struct bag *b) = 2pts

3 / 3


