ADC - Add with Carry Adds two registers and the contents of the C flag and places the result in the destination register Rd. 0001 11rd dddd rrrr
ADD - Add without Carry Adds two registers without the C flag and places the result in the destination register Rd. Rd «— Rd + Rr. 0000 11rd dddd rrrr
ADIW - Add Immediate to Word Adds an immediate value (0-63) to a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the pointer

registers. This instruction is not available in all devices. Refer to the device specific instruction set summary. Rd+1:Rd < Rd+1:Rd + K. 1001 0110 KKdd KKKK

BRCC - Branch if Carry Cleared Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. If C = 0 then PC <- PC + k + 1, else PC <- PC + 1. 1111 01kk kkkk k000

BRNE - Branch if Not Equal. Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is cleared. If Rd # Rr (Z = 0) then PC — PC + k + 1, else PC — PC + 1. 1111 01kk kkkk k001

CALL - Long Call to a Subroutine. Calls to a subroutine within the entire program memory. The return address (to the instruction after the CALL) will be stored onto the stack. 1001 010k kkkk 111k kkkk kkkk kkkk kkkk

CP- Compare. This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional branches can be used after this instruction. CP Rd,Rr0<d<31,0<r<31PC «— PC + 1.

0001 01rd dddd rrrr

LD - Load Indirect from data space to Register using Index X. Loads one byte indirect from the data space to a register. LD Rd, X . 1001 000d dddd 1100
LDI - Load Immediate. Loads an 8 bit constant directly to register 16 to 31. LDI Rd,K. 1110 KKKK dddd KKKK

MOV - Copy Register. This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination register Rd is loaded with a copy of Rr. MOV Rd,Rr. 0010 11rd dddd rrrr
MUL- Multiply Unsigned. This instruction performs 8-bit x 8-bit — 16-bit unsigned multiplication. result placed in r1, r0 (HL). MUL Rd,Rr. 1001 11rd dddd rrrr
NEG- Two's Complement. Replaces the contents of register Rd with its two's complement; the value $80 is left unchanged. NEG Rd. 1001 010d dddd 0001
SBC- Subtract with Carry. Subtracts two registers and subtracts with the C flag and places the result in the destination register Rd. SBC Rd,Rr. 0000 10rd dddd rrrr
ST - Store Indirect From Register to data space using Index X. Stores one byte indirect from a register to data space. ST X+, r26. (i) 1001 001r rrrr 1100
SUB- Subtract without Carry. Subtracts two registers and places the result in the destination register Rd. SUB Rd,Rr. 0001 10rd dddd rrrr

ICALL -
IJMP -

Indirect Call to Subroutine. ndirect call of a subroutine pointed to by the Z (16 bits) pointer register in the register file. 1001 0101 0000 1001
Indirect Jump. Indirect jump to the address pointed to by the Z (16 bits) pointer register in the register file.

JMP - Jump. Jump to an address within the entire 4M (words) program memory. JMP k. 1001 010k kkkk 110k kkkk kkkk kkkk kkkk
LDS - Load Direct from data space Loads one byte from the data space to a register. LDS Rd,k. 1001 000d dddd 0000 kkkk kkkk kkkk kkkk
LPM - Load Program Memory. Loads one byte pointed to by the Z register into the destination register Rd. LPM Rd, Z. 1001 000d dddd 0100

STA -(x) ; M(x) < M(x)-1, M(M(x)) < AC,

Fetch Cycle

Step 1: MAR «— PC;

Step 2: MDR «— M(MAR), PC « PC+1

Step 3: IR «— MDR opcode , MAR«— MDR address ; Read inst. &
increment PC

Execute Cycle

Step 1: MDR «— M(MAR) ; Get EA+1 from memory (i.e., M(x))
Step 2: TEMP « AC ; Save AC to TEMP

Step 3: AC «— MDR ; Decrement EA+1

Step 4: AC — AC -1;

Step 5: MDR « AC ; Store EA into M(x)

Step 6: M(MAR) <« MDR ;

Step 7: AC «— TEMP ; Restore AC

Step 8: MAR «— MDR ; Have MAR point to EA

Step 9: MDR « AC ; Store content of AC into M(M(x))=M(EA)
Step 10: M(MAR) « MDR ;

adiw ZH:ZL,32

Fetch cycle

Step 1: MAR «— PC;

Step 2: MDR «— M(MAR), PC « PC+1 ; Get the high byte of the
instruction and increment PC

Step 3: IR — MDR ; At this point, CU knows this is adiw

Step 4: MAR «— PC;

Step 5: MDR — M(MAR), PC « PC+1 ; Get the low byte of the
instruction and increment PC

Execute cycle

Step 6: AC — R30

Step 7: AC — AC + MDR ; Add 32 to ZL

Step 8: R30 «— AC ; Add 32 to ZL
Step 9: AC — R31

Step 10: If (C==1) then AC — AC +1
carry

Step 11: R31 — AC ; Write it back to register file

; Increment ZH if there was a

ICALL

; Fetch cycle

Step 1: MAR «— PC;

Step 2: MDR — M(MAR), PC « PC+1 ; Get the high byte of the
instruction and increment PC

Step 3: IR(15...8) «— MDR

Step 4: MAR «— PC;

Step 5: MDR — M(MAR), PC « PC+1 ; Get the low byte of the
instruction and increment PC

Step 6: IR(7...0) « MDR ; At this point, CU knows this is an ICALL;
Execute cycle

; The return address is pushed onto the stack

Step 7: MDR « PC(7...0)

Step 8: MAR «— SP

Step 9: M(MAR) < MDR, SP « SP-1 ; Push the lower byte of return
address onto stack

Step 10: MDR « PC(15...8)

Step 11: MAR «— SP

Step 12: M(MAR) < MDR, SP « SP-1 ; Push the higher byte of
return address onto stack

: Put H and L target addresses of the Z register to the PC

Consider the following hypothetical 1-address assembly instruction called “Store
Accumulator Indirect with Pre-Decrement” of the form STA -(x) ; M(x) < M(x)-1,
M(M(x)) < AC, Suppose we want to implement this instruction on the
pseudo-CPU discussed in class augmented with a temporary register TEMP. An
instruction consists of 16 bits: A 4-bit operation code and a 12-bit address. All
operands are 16 bits. PC and MAR each contain 12 bits. AC, MDR, and TEMP
each contain 16 bits, and IR is 4 bits. Give the sequence of microoperations
required to implement the Execute cycles for the above STA -(x) instruction.
Your solution should result in minimum number of microoperations. Assume PC
is currently pointing to the STA instruction and only PC and AC have the
capability to increment/decrement itself. This instruction does not modify the
original content of the AC. Fetch cycle is given below

Consider the internal structure of the pseudo-CPU discussed in class augmented
with a single-port register file (i.e., only one register value can be read at a time)
32 8-bit registers (R31-R0) and a carry bit (C-bit), which is

set/reset after each arithmetic operation. Suppose the pseudo-CPU can be used
to implement the AVR instruction adiw ZH:ZL,32 (Add immediate to word). adiw
is a 16-bit instruction, where the upper byte represents the opcode and the lower
byte represents an immediate value, i.e., “ 32 " (do not worry about the fact

that the actual format is slightly different). Give the sequence of microoperations
required to Fetch and Execute the adiw instruction. Your solutions should result
in exactly 5 cycles for the fetch cycle and 6 cycles for the execute cycle. Assume
the memory is organized into addressable bytes (i.e., each memory word is a
byte), MDR, IR, and AC registers are 8-bit wide, and PC and MAR registers are
16-bit wide. Also, assume Internal Data Bus is 16-bit wide and thus can handle
8-bit or 16-bit (as well as portion of 8-bit or 16-bit) transfers in one
microoperation and only PC and AC have the capability to increment itself.

Consider the internal structure of the pseudo-CPU discussed in class augmented
with a single-port register file (i.e., only one register value can be read at a time)
containing 32 8-bit registers (R0-R31) and a Stack Pointer (SP). Suppose the
pseudo-CPU can be used to implement the AVR instruction ICALL (Indirect Call
to Subroutine) ICALL pushes the return address onto the stack and jumps to the
16-bit target address contained in the Z register. Give the sequence of
microoperations required to Fetch and Execute AVR'’s ICALL instruction. Your
solutions should result in exactly 6 cycles for the fetch cycle and 8 cycles for the
execute cycle. Assume the memory is organized into addressable bytes (i.e.,
each memory word is a byte), MDR register is 8-bit wide, and SP, PC, IR, and
MAR are 16-bit wide. Also, assume Internal Data Bus is 16-bit wide and thus can
handle 8-bit or 16-bit (as well as portion of 8-bit or 16-bit) transfers in one
microoperation and SP has the capability to increment/decrement itself. Clearly
state any other assumptions made.

[se]
Internal Data Bus.

ALU

Registers
R31-R0

i~

Internal
Data Bus.
PC

Things to remember:

Stack starts high and decrements as stuff is placed on it.

Avrithmetic: converting dec to binary: do you need x to get y? yes=1, no
=0.

Dec to Hex: divide number by 16 and that is high byte, low byte =
original number - the closest you got.

Two’s complement:

Two's complement is the way every computer | know of chooses to
represent integers. To get the two's complement negative notation of
an integer, you write out the number in binary. You then invert the
digits, and add one to the resullt.

Decimal Hex Binary
0 0 00000000
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001
10 a 00001010
11 b 00001011
12 c 00001100
13 d 00001101
14 e 00001110
15 f 00001111
16 10 00010000

Assembler Directives

ORG: Tells the assembler where to put the instructions that follow
it.

.ORG 0x37

EXIT: Tells the assembler to stop assembling the file
EQU: Assigns a value to a label.

Syntax: .EQU label = expression

.EQU io_offset = 0x23

BYTE: Reserves memory in data memory

Syntax: label: .BYTE expression

var: .BYTE 1

DB: Allows arbitrary bytes to be placed in the code.
Syntax: label: .DB expressionlist

consts: .DB 0, 255, 0b01010101, -128, Oxaa

Text: .DB “This is a text.”

DW: Allows 16-bit words to be placed into the code
Syntax: label: .DW expressionlist

varlist: .DW 0,0xffff,0b1001110001010101,-32768,65535
INCLUDE: Tells the assembler to read from the specified file.
Syntax: .INCLUDE filename

.INCLUDE “m128def.inc”

VO Register $3F

1 0

[z | ¢ |

Step 13: PC(15...8) «— R31 ; Put the H address of the target into PC }l,";:.’ﬂ;‘ Tofftont memory
Step 14: PC(7...0) < R30 ; Put the L address of the target into PC sgnals anao devices
GPRs
7 O Addr.
il e Siatlus Register (SAEG)
R 0
— o 7 5] L] L 3 2
R0 L La w [o= [5]
Ra S04 RN) RAN DG RN (D)
RS w05 K-, -, and Z-regebers B
| mapped 1o R2E-A3 g ; . Eﬂhbal h:;;ﬂl;ﬂaha
15 [Cap
S L Y A Bit & - Hall Carry Flag
hic 2 e = = Bil 4 - Sign Bat
s Yeragitter |- s I noE] Erl 3 Tms.Eﬁmphnm'rtDuerﬂﬂthg
L D - - Bil 2 - Megalive Flag
R HIE 2 [Bil 1 - Zena Fiag
o) Zreoiser [A3t] o | Bil 0 - Carry Flag

R RANN FRW0 RO AN 0

onsider the implementation of the CPI Rd.K
Compare Register with Immediate) instruction on instruction on the enhanced AVR datapath.
enhanced AVR datapath.

a) List and explain the sequence of

:Rd- K
b) List and explain the control signals and the

Rd.Y+. Instruction.

setting MA to 0. The ALU then performs a

flags in SREG). Note that the result of the AL case for wA and wB since updated value of ¥ needs (o be written back.

eed to be sel to 0's so that the memory and the be don't cares except DM _w, which needs to be set to 0 so that the mem

FCh_en and PCI_en) and SP_en are setto 0's to

prevent PC and SP from being overwritten. Note respectively, from being overwritien. Note that IR_en can be “dont care”

Consider the implementation of the LD Rd Y+ (Load Indirect and Post-Increment)

{a) List and explain the sequence of microoperations required 1o implement LD
Rd)Y+. - EX1: DMAR = YhYL, Yh'¥l = Yh'Yl + 1 EX2 Rd ~ M[DMAR] (bj List and
icrooperations required to implement CP1 Rd K. -explain the contral signals and the Register Address Logic (RAL) output for the LD

EX1: The contents of Yh and] are read from the Register File by providing Yh and
Y1 torA and rB, respectively. YhoYl or Y is routed to DMAR by setting MH 1o 0. Al the cares” except RF_wARF_wB, DM_w, IR_en, and PC_en (as well as PCh_en and PCI_en), which all need
same time, Y is incremented by one by the Address Adder (via MUXG) by sefting

: The content of Rd is read from the Register Adder_f 1o 01, and then latched onto YH and YL (via MUXC) by setting both RF_wA
ile by providing the register identifier Rd to rA. Al and RF_wE to 1's and providing Yh and Y1 to wiA and wB, respectively. All other
same time, the constant K from the instrucion control signals can be don't cares except DM_w, which needs to be set 1o 0 so that
s routed (via the Alignment Unit) through MUXA, the memoary is not overwritten, and IR_en, PC_en, as well as PCh_en and PCI_en,
and SP_en, which are all set to 0's to prevent IR, PC, and SF, respectively, from
act operation (ALU_f = 0010), which then sets being overwritten, The RAL output for rA and rB are set to Yhand Y1, respectively, so address to the Data Memory by setting ME o 0 and DM_r to 1. The read value is then routed through
appropriate condition flags (e.g., C. Z, N, W, and that the upper and lower bytes of Y can be read from the register file. This is also the DEMUX to the upper

Consider the implementation of the RET (Return from Subrouting) instruction on the enhanced AVR

datapath.
{a) List and explain the sequence of microoperations required to implement RET. - EX1: SP =8P +1, EX2:
PCh ~ M[SP], SP ~ SP+1, EX3: PCI ~ M[SP]

(b) List and explain the control signals and the Register Address Logic (RAL) output for the RET instruction
EX1: The content of SP is routed 1o the Increment/Decrement Unit, and incremented by setting Inc_Dec to 0,
The incremented SP is then relatched onto SP by sefting SP_en o 1. All other contral signals can be “don't

to be set to 0's 1o prevent the register file, Data Memory, IR, and PC from being overwritten with unwanted
values.

EX2: The content of SP is routed to the Increment/Decrement Unit, and incremented by setting inc_Dec to 0.
The incremented SP is then redatched onto SP by sefting SP_enfo 1. Af the same time, the Data Memory
location

pointed to by SP, i.e., M[SP], which is the higher byte of the return address, is read by providing SP as an

tyte of PC, i.e., PCh by setting DEMUX to 1 and PCh_ento 1. All other control signals can be don't cares

joperation does not have to be stored back into the [EX2: The content of DMAR is routed through MUXE and used to fefch the operand except RF_wA/RF_wB, DM_w, IR_en, and PC_en (as well as PCI_en), which all needto be setto 0's to
register file. All other control signals can be don't from Data Memory. The felched operand is routed through MUXEB and MUXC tothe prevent the
cares except DM_w, RF_wA, and RF_wB, which inB of the register file and written by setting RF_wE to 1. All other contral signals can register file, Data Memory. IR, and PC from being overwritten with umwvanted values.

ory isnot EX3: The Data Memory location painted to by SF, i.e., M[SP], which is the lower byte of the relurn address,

pegister file are not updated, and PC_en (as well asoverwritten. PC_en (as well as PCh_en and PCI_en), SP_en, RF_wA, which all needis read by providing SP as an address 1o the Data Memaory by setting ME to 0 and DM _r to 1. The read
to be set to Oto prevent the PC register, the SP register, and the register file,

value is then routed to DEMUX to the lower byte of PC, |.e., PCI, by setting DEMUX to 0 and PCI_ento 1.
since this is All other control signals can be don't cares excepl Sp_en, RF_wA/RF_wB, DM_w and PC_en (as well as

fhat IR_en can be “don't care” since this is the last the last execute cycle and the IR register will be overwritten in the fetch (i, next) PCh_en),, which all need to be set to 0's to prevent the SP. register file, Data Memaory, and PC from being
the only) execute cycle and the IR register will be cycle. The RAL output for wB has to be set to Rd because the loaded value from

overwritten with uwanted values, Note that IR _en can be “don't care” since this is the last execute cycle

overwritten in the fetch (i.e.. next) cycle. memaory has to be written to the destination register and IR register will be overwritien in the Fetch (i.e., next) cycle.
IF S mislzie]o [Comwol | e R X Controk | .pp T ool | g T s15lelele o] SOt | e e
EX__|"[[5/7|£ 2| sinats EX1 X2 Signals EXI EX2 || Signals EX1 EX2 EX3 =>[= Signals X1 EX2 4]
0 x =] 0 x x M) 0 X] M) 0 x x % Hal i 0 x x X
0 x MK [1] X X Mk 1] X x g:‘ 3 : : : MK 1] X % X
1 X ML 0 x x ML 1] x x ™ 1 i] = ML 0 X A X
1 x = md 1] B IR en 1 [1] x llt_cn 1 0 x PC en i o 0 0 tad hal [IR_en 1 0 1] %
1 [0} —|2|PC_en 1 i} PC en 1 x] FCh en 0 [] 0 PC_en 1 0 0 0
1] [1] § PCh en 0 1] 1] PCh en 0 1] 1] POl en [1] [1] [1] [1] PCh en [i] 0 1 i)
] [1] * |FCl_en o 0 0 PCl en (] 0 1] NPC en 1 X X X bl PCl en 0 1] 1] 1
NPC en 1 K| [|E e [T NPC e] x X NPC_en] 0 x SE_en (1]] 0 0 NPC_en 1 x X x
SF en 0 0 Sl 5P en 0 0 0 SP en i I 1 LDSMLICE_x X 2 - SF_en 0 1 i 0
DEMUX x % : X x X DEMUX x x x m 2 2 * : | | DEMUX N " i 0
) x 0.l x x x JIMA x x x AT T T Tow T |79 |02 x X X x
MB % x sld x x] MB x x x M = = = [T ME x x " X
ALLL T AANRK Lt 1] 1t 0K Lot U £ J0K EREES HAK RE_wA [} 1] [i] 0 [sl:]s ALU [HAKK KXY AAXN AN
MC % o X% [[T1] MC x% [} [i] RF_wi 0 0 0 1 b b [il% z|_MC [Ty X% X% [
BF wA 0 0 .-;_ [1] 1 [1] RF wh [i] 1] [i] MDD x x x x =[TRE wi 0 0 0 m
RE wi 0 o |% & 0] I RF_wB 0 0 0 ME x x x - RF wB 0 0 0 0
MDY % ¥ = x x x MD x 0 0 oh x - = : “MD X x - -
: e — : 1 : M _w [i 0 [I Ll e : s
ME x % :>=§_!ﬁ x x ME % o 0 WP \ ,‘ = rom s G # | _ME X s 1 0
DM ¢ % x g| DM.x X X | DM ¢ x 0o 0 MG % 0 = = DMt X X 1 T
DM_w 0 o DM_w D L]) DM_w i 1 L [Adder 7] il e o DM w 0 0 0
ME 3 % - MF x L] X MF X X [1] Ine_Dec [] % % A o [T X 5 5 X
MG X % o o o o |2 MG x 1 x MG x X 0 M % x x x 52| MG X % m M
Adder T o XX & _Adder © XX 01 o Adder fe o 00 M . E 5 X Adder T E X% XK [
Inc_Dec x x _E| [(ine_Dee x x x Inc_Dec X 1 L _| | Tine_Dec ~ T 0 \
MH x x wef= e) | [MH x 0 % MH x x % =B || | an X % ® %
Ml x x M x x X Ml X 1] 1 M % % % %
Consider the implementation of the RCALL (Relative Call to Subroutine) instruction on the enhanced AVR Consider the implementation of the LPM (Load Program Memory) instruction on the enhanced AVR datapath.
datapath. (a) List and explain the sequence of microoperations required to implement LPM. - EX1: PMAR «— Zh.Z| EX2: MDR. —

(a) List and explain the sequence of microoperations required to implement RCALL. - EX1: M[SP] — RARI, SP — SP - 1
EX2: M[SP] «+— RARh, SP + SP-1,PC « NPC + sek

(b) List and explain the control signals and the Register Address Logic (RAL) output for the RCALL instruction

EX1: SP provides the address for the Data Memoary by setting ME to 0, and then RARI is written to the Data Memory by
sefting Ml to 0, MD to 0 and DM_w to 1. At the same time, SP is decremented using the Increment/Decrement Unit by
setting Inc_Dec to 1 and latched onto the SP by setting SP_en to 1. All other control signals can be “don't cares” except
IR_en and NPC_en, which need to be set to 0's to prevent the IR register and the NPC register (as well as RAR) from
being overwritten. Note that PC_en can be don't care since PC will be overwritten in EX2. Finally, RAL output can be all
don't cares because the register file is not used.

EX2: SP provides the address for the Data Memory by sefting ME to 0, and then RARh is written to the Data Memory by
setting Ml to 1, MD to 0 and DM_w to 1. At the same time, SP is decremented using the Increment/Decrement Unit by
sefting Inc_Dec to 1 and |atched on to the SP by sefting SP_en to 1. In addition, NPC and se K are added using the
Address Adder by setting MG to 0, MF to 0, and Adder_f to 00. The resuiting target address is latched onto the PC by
sefting MJ to 1and PC_ento 1. All other control signals can be don't cares. Note that IR_en can be “don't care” since this
is the last execute cycle and the IR register will be overwritten in the fetch (i.e., next) cycle. Also, NPC_en can be “don’t
care” because the content of RAR (as well as NPC) will not change until the end of the cycle, so there is no danger of the
return address in RAR being modified while the RARh is pushed onto the stack, and will be updated by the fetching of the
instruction from the target anyway. Finally, RAL output can be all don't cares because the register file is not used.

1 =
§5E ¥
= KM MK KA O M M LD HOOO MG m O m :§V|x
= MM MMM K MEOOHNOO N LHOHO A XMOX NeOX - ;
B KKMMEMMIOHOB N O NS S oK OKNKS X e g
£ M E N Al O L LOLCOO i~ kb ot] 8
o] il
a8 X N BEY ok
g = N'ovvvvvvvv'uvvvvvvvuvuvvxg’ovxx i} a2
] ¥ N OUUUTDUTTITTUTTUTUDTIUDTOIXVOO XX Z89E o=
vx TOVIVTVTVIVTVTCTVVVTCTT TV O DTN T X300 XX] e
] L-R-B-R-E-R-EC-E-E-R-E-E-R-E-E-B-E-B-E-E-E-E-BE-f L. 5—§ e
= I} - o
g = 3 n'g‘ ag
5 E G OEMEKEEEKTDPITDVITUITVOD X~ NN =c§ S&
o=l ¥ DO MMMMMMMEOOHNHOONNOHAM A Ao Mo MY ==& pid
= EHKKEEKMEOSHS8 NSNS 33ddndoZnX rlE o8
] B MM KEKEEKoOMOOM~OHOOOOOO0OO0 DX §8s 8wm
o dlx 'p ETES o
=5 a2 T E= e 8
A% 0 000000 0EHO NN MO HOHOdddddddn e Ee §
© AHMAMAANAMO0CCO0C00C0O000000C OO0 MG o
A A A A A 40O 000000000000 <000 =~ b] =]
e, [epapepepape el - R R R e R e R ba xE"
= g 2 L8 He
2 =2 -
= 2 2.5 =-g
E’ 822 WE 4
= U SR EE EE RS 4 B K SR B8 B BE SN 48 0 B B0 B BE B4 00 BN 48 81 B8 B 06 W w@s b -
= B FEAARUGRNMONAMTNIRONAAU QMM N 24z Ty
g a FETTTTTTTNNNNN NN DN NN D8 D BRSO]
2 4, . 000000000000 000000000L00B0 0O 2Ba HE
a e w PO OCC0O0OCOCCOCO0OOOOOOOOOOOO0O0 = u Boa=
5 gl = TEY Ex=
7 98 .8 £33 2ET
o {3 g8 U
2 Bi'y Sw
o P
] ‘guﬂ ol ==
z ~ei = x5 g
, ~E BN HAg 2.
-3 @HHNT A M P 8=
= Y933 H3 > .3 o B 1L
¥ _ 3334 3% & £ mete 50 2
s =4 I TEA=. 22 § § ﬁa;_ El in
z § TETE & - - = =
8"'3"' am =) [=] o 3 q =
.; RR A o Do D e I - L - | s 1 é = 9
] Iy, AEAES AL XMNTHNNLUEUNHUMALULDS WJAY W O SE2 g
o n?""‘”ﬁ — = .] . Bnab ~as =] ué 2
P Ry Sy RS R = == 2
2 Eﬁggn Sp= PEdESHECTIONIEEnD -Nu:—ém:\:-égn —8E E %g
ok 23 % SESw HHME MMM HNHNENEE N HN IR NENEY NN -z E08°
£ __.s,mng_! R gl “%g Ecl“
] = n
EE“""‘-‘:E" 2,822 gsppuuy 28 €4 2
FEwxID N BRE, ddddd3d - - RO SEEAIYEENBRD Voo Eod
AgiEesy LELLW DUTTUITUTUITT OB L4 TS84T LEpoa8d w2 =} 0
EEe@2 opég ArdrdAAAAAAEA~AeNAubReDouWRDAN - :su‘:'“"gx
© 2 b Y 1 5= %
=S unax > = 223 £y
< o9 o B] ‘Go o ==]
LB B REX
E'gvvﬁxx ‘E‘;’S B3
L EMMNTD o H MO P B,
SEEEsEY i o . 2al g a-opBgd
sEeRAESR P s - g Hud Ng«;n'—-§.;
8izz0532 g3 g g § 943 ajisnzag
SEEEEEE -3 2 2 888 E®ESEERE

M[PMAR] EX3: RO — MDR

(b) List and explain the control signals and the Register Address Logic (RAL) output for the LPM instruction.

EX1: The Zh and ZI registers are read from the Register File by providing Zh and ZI to rA and rB, respectively. Zh:Zl \is
then latched onto the PMAR register. This is done by routing through the Address Adder by setting MG to 1 and Adder_f
to 11. All other control signals can be “don’t cares” except RF_wA and RF_wB to prevent the register file from being
updated. In addifion, IR_en, DM _w, PC_en, and SP_en need to be set to 0's to prevent IR register, Data Memory, PC
register, and SP register, respectively, from being overwritten. The RAL output for rA and rB are set to Zh and ZI,
respectively, so that the upper and lower bytes of Z can be read from the register file.

EX2: The Program Memory is read based on PMAR by setting ML to 1, and then the value read is latched onto MDR. All
aother control signals can be dor't cares except RF_wA/RF_wB, IR_en, DM_w, PC_en, and SP_en, which need to be set
to O's to prevent the register file, IR register, Data Memory, PC register, and SP register, respectively, from being
overwritten. Finally, RAL output can be all don't cares because the register file is not used.

EX3: The content of MDR is written back to RO in the register file by setting MC to 10, rB to 00000002, and RF_wB to 1.
All other control signals can be don't cares except DM_w, PC_en, and SP_en, which need to be set to 0's to prevent Data
Memory, PC register, and SP register, respectively, from being overwritten. Note that IR_en can be “don’t care” since
this is the last execute cycle and the IR register will be overwritten in the Fetch (i.e., next) cycle. The RAL output for wB
has to be set to Rd (which happens to be 0) because the loaded value from memory has to be written to a destination
register.

BIT AND BIT-TEST INSTRUCTIONS

8 .
= .k LSL Rd Logical Shift Len Ro(n+1) « RA(n}R&O) - 0.C « RAT)
2
s B LSR R4 Logical Shft Right Re(n) « RA{n+1)RE(T) « 0.C + RAO)
% E ROL Re Rotate Left Through Carry Ro(0) - C.Re{n*1) +- R(A).C e R(T}
é‘; o ROR Rd Rotate Right Through Carry R(7) - C.REN) e Re{n+1).C e RS}
4 § ASR Re Arthmete Shift Right Re(n) « Re{n+1), n=0.5
- "
F2% SWAP Re Swap Nbbles RA(3..0) -+ RA(7.4)
382 8SET s Flag Set SREG(s) + 1
ﬁ :g BCLR s Flag Clear SREG(s) « 0
58 s81 Rb Sat B in IO Register VOR b) - 1
E]

i | cel PD Clear B in /O Register LO{P b) - 0

-
% §§ 8ST Rr.D B2 Store from Register 1o T T e Red)
] : = 8LD Re.b Bt load from T 1o Register RA®) e T
g 2 2 .def mpr = rl6 ; Multi-purpose register
? Ky & .def count = rl7 ; Assume R17 is initially 0
nege= -ORG $0000
5E 8= START: RJMP INIT
CB g .ORG $0002
T E = RCALL ISR
EET= RETI
- 2= INIT: LDI mpr, 0b00000011 ; Sets Input Sense Control for pin INTO
Lo T 5| STS EICRA, mpr ; to detect an interrupt on a rising edge
Ead R LDI mpr, 0b000000O1 ; Enables interrupt for pin INTO
3 é OUT EIMSK, mpr :
e = LDI mpr, $00 ; Set Port A Direction Register for input
- R OUT DDRA, mpr ;
bl g - SEI ; Turn on interrupts
§: 2§s- LDI XH, high(CTR)
&g = LDI XL, low(CTR)
e LDI YH, high(DATA)
5§22 Ei LDI YL, low(DATA)
45 M= E wWAIT: RIMP WAIT
§=% § % LORG O0x100F

— 2 T % ISR: IN mpr, PINA

Ly) k.
Exnek % ST Y+, mpr
g E§ m INC count
EF H§ ¥ sT X, count
Eag
AR RET

- -
378 2, .DSEG
25w 8 CIR: .BYTEL
R § £ DATA: .BYTE256

Write an AVR assembly code that waits for 1 sec using the
8-bit Timer/Counter0 with the system clock

frequency of 16 MHz operating under Normal mode. This is
done by doing the following:

(1) Timer/Counter0 is initialized to count for 10 ms and then
interrupts on an overflow;

(2) The main part of the program simply loops, and for each
iteration, a check is made to see if the loop has

reach 100 iterations; and

(3) On each interrupt, Timer/Counter0 is reloaded to interrupt
again in 10 ms.

The first thing that needs to be done is to calculate the value
to be loaded onto Timer/Counter1. This is done by evaluating
the following equation: value = 255 — (10 ms/(prescale x 62.5
ns)) = 255 — (16,000,000/prescale) We want to use a prescale
value that would lead to the highest resolution (i.e., lowest
prescale value) and yet satisfy the above equation, thus
prescale = 1024. This leads to value = 99. Obviously, there
are many ways to write this code, but here is one possibility:
.include “ml28def.inc”

.def rlé
.def counter =

mpr =
rl7
.ORG $0000

RJMP Initialize
.ORG $0020 ;
vector
RCALL Reload_counter
RETI

.ORG $0046 ;
Initialize:
LDI mpr, 0b00000100 ; Enable interrupt on
Timer/Counter0 overflow

OUT TIMSK, mpr

SEI ; Enable global interrupt

mpr, 0b00000111 ; Set prescalar to 1024
TCCRO, mpr ;

mpr, 99 ; Load the value for delay
TCNTO, mpr ;
counter, 100 ;
LOOP:

CPI counter, 0 ;
BRNE LOOP

Timer/Counter0 overflow interrupt

End of interrupt vectors

Set timer

Repeat for 100 times

Reload_counter:
PUSH mpr

LDI
ouT
DEC
POP
RET
The initialization part of the code first enables Timer/Counter0
overflow interrupt and the global interrupt. Then, the prescalar
is setto 1024, i.e., CS02 =1, CS01 = 1, and CS00 = 1. Note
that the Normal mode of operation does not have to be
explicitly configured since the Waveform Generation Mode bits
are all Os at reset, i.e., WGM13-10 = 0000 (Normal mode).
The next part sets the Timer/Counter0 to value = 99. Once the
Timer/Counter0 is set, the program enters a loop waiting for a
Timer/Counter0 overflow interrupt to occur. In addition,
counter is checked to see if it has reached zero. Finally, the
Reload_counter routine decrements the counter, reloads the
value, and returns.

mpr, 16 ;
TCNTO, mpr ;
counter

mpr

Load the value for delay

Based on the initial register and data memory contents shown below (represented in hexadecimal), show how
these contents are modified (in hexadecimal) after executing each of the following AVR assembly instructions.
Do not be concerned about what happens to the Status Register (SREG) afier the operation. [nstructions are

wunrelated.

Consider the AVR code segment shown below that initializes and
handles interrupts. Descriptions of Data Directional Register (DDRX),
External Interrupt Control Registers (EICRA & EICRB), and External
Interrupt Mask Register (EIMSK) are given on the following page.

(a) Explain in words what the code accomplishes when it is executed.
That is, explain what it does and how it does it. - This code reads an 8-bit
value latched on to Port A when an interrupt occurs from INTO. It then
stores it to memory starting at address DATA then increments a count,
which will be stored in memory location at CTR.

(b) Write and explain the interrupt initialization code (lines (1)-(7))
necessary to make the interrupt service routine (starting at ISR:) work
properly. More specifically,

.include “ml28def.inc”

.def mpr = rl6 ; Multi-purpose register

.def count = rl7 ; Assume R17 is initially 0

.ORG $0000

START: RJMP INIT

.ORG $0002

RCALL ISR

RETI

INIT: LDI mpr, 0b00000011 ; Sets Input Sense Control

for pin INTO

STS EICRA, mpr ;
edge
LDI

ouT

to detect an interrupt on a rising

mpr, 0b00000001 ;
EIMSK, mpr ;

Enables interrupt for pin INTO

LDI mpr, $00 ; Set Port A Direction Register for input

OUT DDRA, mpr ;

SEI ; Turn on interrupts

LDI XH, high (CTR)

LDI XL, low (CTR)

LDI YH, high(DATA)

LDI YL, low(DATA)

WAIT: RJMP WAIT

.ORG 0x100F

ISR: IN mpr, PINA

ST Y+, mpr

INC count

ST X, count

RET

.DSEG

CTR: .BYTE 1

DATA: .BYTE 256

eEEIf Engine
Enable (R
Engine
Direction

.—ﬂﬂ.’ﬁﬂ"”"‘gnmne
— Direcion()
————— Enable ()]

Engine

!
Whisker (R)| * | Whisker (L)

Write a subroutine initUSART1 to configure ATmega128 USART1 to operate as a
transmitter and sends a data every time USART1 Data Register Empty interrupt occurs.
The transmitter operates with he following settings: 8 data bits, 2 stop bits, and even parity,
9,600 Baud rate, Transmitter enabled, Normal asynchronous mode operation, Interrupt
enabled, Assume the system clock is 16 MHz. The skeleton code is shown below:

There are many ways to write this code but here is one possible code for initUSART1.
initUSART1:

; Port D set up - pin3 output

1di mpr, 0b00001000 ; Configure USART1 (Port D, pin 3)

out DDRD, mpr ; Set pin direction to output

; Set Baud rate

1di mpr, 103 ; Set baud rate to 9,600 with £ = 16 MHz

sts UBRR1L, mpr ; UBRRIH already initialized to $00

; Enable transmitter and interrupt

1di mpr, (1<<TXEN1|1<<UDRIEL) ;
sts UCSR1B, mpr

; Set asynchronous mode and frame format

1di mpr, (1<<USBS1|1<<UPM11|1<<UCSZ11|1<<UCSZ10)
sts UCSRIC, mpr ; UCSRIC in extended I/0 space,
ret

The first two instructions configure Pin 3, Port D for output since the USART1 is acting as a
transmitter. The next two instructions set the Baud rate. This is done by calculating the
UBRR value, which is (16MHz/(16x9600))-1 = 103, and then writing it into the UBRR1L
register. The UBRR1H register was not written to since upper byte is $00. The next two
instructions enable the transmitter and the interrupt, which is done by setting the 3rd-bit
(i.e., TXEN1) and the 5th-bit (i.e., UDRIE1) of UCSR1B. The next pair of instructions sets it
to the asynchronous mode, which is done by setting the 6th bit (i.e., UMSEL1) of UCSR1C
to 0. Note that 0<<UMSEL1 is not necessary since it is already initialized to 0 on reset.
This is also the case for 0<<UCSZ12 and 0<<UPM10. The frame format with 8 data bits, 2
stop bits, and even parity is set by selecting UCSZ12:0 to be 011, UPM11:0 to be 10, and
USBS1 to 1. These bits are configured using
(1<<USBS1|1<<UPM11|0<<UPM10|0<<UCSZ12|1<<UCSZ11|1<<UCSZ10) Also note that
sts is used because UCSR1C is in the extended I/O space. Here is a possible code for
SendData, which is called when USART1 Data Register Empty interrupt occurs.
SendData:

Enable Transmitter and interrupt

use sts

1d rl7, X+ : Assume X points to the data to be transmitted
sts UDR1l, rl7 ; Move data to Transmit Data Buffer
Ret

Consider the AVR code segment shown below that initializes /O and interrupts for Tekbot
shown below.

.include “ml28def.inc”

.def mpr = rlé6

.org $0000

rjmp INIT

INIT: 1di mpr, O0b00001111 (1) ; Set DDRA to control engine
out DDRA, mpr (2) ;

1di mpr, 000000000 (3) ; Set DDRD to detect whiskers

out DDRD, mpr (4) ;

1di mpr, 000000011 (5) ; Enable pull-up resisters for L/R whiskers
out PORTD, mpr (6) ;

1di mpr, 0b00001010 (7) ; Set EICR to detect on falling edge
sts EICRA, mpr (8) ;

1di mpr, 0b00000011 (9) ; Set EIMSK

out EIMSK, mpr (10) ;

sei ; Turn on interrupts

Consider the internal structure of the pseudo-CPU discussed in class augmented with with a single-port register
file (i.e., only one register value can be read at a time) containing 32 8-bit registers (R0-R31) and a Stack Pointer

(SP) register. Suppose the very simple CPU can be used to implement the AVR instruction RET (Return from

; Get the high byte of the instruction and increment PC

; Get the low byte of the instruction and increment PC
1 At this point, CU knows this is RET

; Pop the higher byte of return address from the stack

, Pop the lower byte of return address from the stack

(i) sbiw xH:iL, 2 Registers Data Memory Subroutine) with the format shown below:
L o o oot Step I: MAR <~ PC;
(iv) ade r2, r1 Ri| 8 moll BE Step 2: MDR <« M(MAR), PC « PC+1
(v) ste $0007, r28 rz[1B g 95 Step 3: IR(15...8) «— MDR
o03] EC
iy . 0104] <8 Step4: MAR <= PC;
“: i — o108 2D Step 5: MDR < M(MAR), PC < PC+1
| oo o4 Step 6: IR(7...0) « MDR
v 0102 | oto7] o2
SREG| FF
el Step 7: SP « SP+1
Step 8: MAR < SP
Solution: Step 9: MDR « M(MAR), SP « SP+1
(i) Since X is $0106, subtracting 2 results in $0104. Thus, X changes to $0104. Slcrj 10: PC(I5... 8) « MDR
(i) R27 changes to $55,,. Thus, X changes to 5506, Step 11: MAR « SP
(iii) R2 is 000110115, thus rotating it right through the carry, which is 1, results in 10001101=8Ds. Thus, R2 Step 12: MDR < h-'[\',!\R}
changes to $8D. Step 14 5 »
(iv) Status Register (SREG) indicates FF. thus C-bit (LSB) is set. Slcp 13; PC(?O) «— MDR

Thus, 1B g+ 05 + Ol(carry) = 214
R2 changes to 521

(v) Since R28 is lower byte of Y registers, r28 =3$02, and thus M[0007]=$02.
Mix)<-M(=z)-1, RAC<-RAC+(M(M(x))

aADD - (x)
stepl:MDR<-M (MAR) ,
stepd :AC<-MDR
step3iAC<-AC-1
stepd iMDR<-AC
step5:M (MAR) <-MDR
stepb iMARS-MDR
stepT :MDR<-M (MAR) ,
stepd :AC<-AC+MDR

TEMP<-AC

AC<-TEMP

Goto fetch and Execute cycle

