
ADC - Add with Carry Adds two registers and the contents of the C flag and places the result in the destination register Rd. 0001 11rd dddd rrrr
ADD - Add without Carry Adds two registers without the C flag and places the result in the destination register Rd. Rd ← Rd + Rr. 0000 11rd dddd rrrr
ADIW - Add Immediate to Word Adds an immediate value (0-63) to a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the pointer
registers. This instruction is not available in all devices. Refer to the device specific instruction set summary. Rd+1:Rd ← Rd+1:Rd + K. 1001 0110 KKdd KKKK
BRCC - Branch if Carry Cleared Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. If C = 0 then PC <- PC + k + 1, else PC <- PC + 1. 1111 01kk kkkk k000
BRNE - Branch if Not Equal. Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is cleared. If Rd ≠ Rr (Z = 0) then PC ← PC + k + 1, else PC ← PC + 1. 1111 01kk kkkk k001
CALL - Long Call to a Subroutine. Calls to a subroutine within the entire program memory. The return address (to the instruction after the CALL) will be stored onto the stack. 1001 010k kkkk 111k kkkk kkkk kkkk kkkk
CP- Compare. This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional branches can be used after this instruction. CP Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1.
0001 01rd dddd rrrr
LD - Load Indirect from data space to Register using Index X. Loads one byte indirect from the data space to a register. LD Rd, X . 1001 000d dddd 1100
LDI - Load Immediate. Loads an 8 bit constant directly to register 16 to 31. LDI Rd,K. 1110 KKKK dddd KKKK
MOV - Copy Register. This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination register Rd is loaded with a copy of Rr. MOV Rd,Rr. 0010 11rd dddd rrrr
MUL- Multiply Unsigned. This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication. result placed in r1, r0 (HL). MUL Rd,Rr. 1001 11rd dddd rrrr
NEG- Two's Complement. Replaces the contents of register Rd with its two's complement; the value $80 is left unchanged. NEG Rd. 1001 010d dddd 0001
SBC- Subtract with Carry. Subtracts two registers and subtracts with the C flag and places the result in the destination register Rd. SBC Rd,Rr. 0000 10rd dddd rrrr
ST - Store Indirect From Register to data space using Index X. Stores one byte indirect from a register to data space. ST X+, r26. (i) 1001 001r rrrr 1100
SUB- Subtract without Carry. Subtracts two registers and places the result in the destination register Rd. SUB Rd,Rr. 0001 10rd dddd rrrr
ICALL - Indirect Call to Subroutine. ndirect call of a subroutine pointed to by the Z (16 bits) pointer register in the register file. 1001 0101 0000 1001
IJMP - Indirect Jump. Indirect jump to the address pointed to by the Z (16 bits) pointer register in the register file.
JMP - Jump. Jump to an address within the entire 4M (words) program memory. JMP k. 1001 010k kkkk 110k kkkk kkkk kkkk kkkk
LDS - Load Direct from data space Loads one byte from the data space to a register. LDS Rd,k. 1001 000d dddd 0000 kkkk kkkk kkkk kkkk
LPM - Load Program Memory. Loads one byte pointed to by the Z register into the destination register Rd. LPM Rd, Z. 1001 000d dddd 0100

STA -(x) ; M(x) ← M(x)-1, M(M(x)) ← AC,
Fetch Cycle
Step 1: MAR ← PC;
Step 2: MDR ← M(MAR), PC ← PC+1
Step 3: IR ← MDR opcode , MAR← MDR address ; Read inst. &
increment PC
Execute Cycle
Step 1: MDR ← M(MAR) ; Get EA+1 from memory (i.e., M(x))
Step 2: TEMP ← AC ; Save AC to TEMP
Step 3: AC ← MDR ; Decrement EA+1
Step 4: AC ← AC -1 ;
Step 5: MDR ← AC ; Store EA into M(x)
Step 6: M(MAR) ← MDR ;
Step 7: AC ← TEMP ; Restore AC
Step 8: MAR ← MDR ; Have MAR point to EA
Step 9: MDR ← AC ; Store content of AC into M(M(x))=M(EA)
Step 10: M(MAR) ← MDR ;

Consider the following hypothetical 1-address assembly instruction called “Store
Accumulator Indirect with Pre-Decrement” of the form STA -(x) ; M(x) ← M(x)-1,
M(M(x)) ← AC, Suppose we want to implement this instruction on the
pseudo-CPU discussed in class augmented with a temporary register TEMP. An
instruction consists of 16 bits: A 4-bit operation code and a 12-bit address. All
operands are 16 bits. PC and MAR each contain 12 bits. AC, MDR, and TEMP
each contain 16 bits, and IR is 4 bits. Give the sequence of microoperations
required to implement the Execute cycles for the above STA -(x) instruction.
Your solution should result in minimum number of microoperations. Assume PC
is currently pointing to the STA instruction and only PC and AC have the
capability to increment/decrement itself. This instruction does not modify the
original content of the AC. Fetch cycle is given below

Things to remember:
Stack starts high and decrements as stuff is placed on it.
Arithmetic: converting dec to binary: do you need x to get y? yes=1, no
= 0.
Dec to Hex: divide number by 16 and that is high byte, low byte =
original number - the closest you got.

Two’s complement:
Two's complement is the way every computer I know of chooses to
represent integers. To get the two's complement negative notation of
an integer, you write out the number in binary. You then invert the
digits, and add one to the result.

Decimal Hex Binary

adiw ZH:ZL,32
Fetch cycle
Step 1: MAR ← PC;
Step 2: MDR ← M(MAR), PC ← PC+1 ; Get the high byte of the
instruction and increment PC
Step 3: IR ← MDR ; At this point, CU knows this is adiw
Step 4: MAR ← PC;
Step 5: MDR ← M(MAR), PC ← PC+1 ; Get the low byte of the
instruction and increment PC
Execute cycle
Step 6: AC ← R30
Step 7: AC ← AC + MDR ; Add 32 to ZL
Step 8: R30 ← AC ; Add 32 to ZL
Step 9: AC ← R31
Step 10: If (C==1) then AC ← AC +1 ; Increment ZH if there was a
carry
Step 11: R31 ← AC ; Write it back to register file

Consider the internal structure of the pseudo-CPU discussed in class augmented
with a single-port register file (i.e., only one register value can be read at a time)
32 8-bit registers (R31-R0) and a carry bit (C-bit), which is
set/reset after each arithmetic operation. Suppose the pseudo-CPU can be used
to implement the AVR instruction adiw ZH:ZL,32 (Add immediate to word). adiw
is a 16-bit instruction, where the upper byte represents the opcode and the lower
byte represents an immediate value, i.e., “ 32 ” (do not worry about the fact
that the actual format is slightly different). Give the sequence of microoperations
required to Fetch and Execute the adiw instruction. Your solutions should result
in exactly 5 cycles for the fetch cycle and 6 cycles for the execute cycle. Assume
the memory is organized into addressable bytes (i.e., each memory word is a
byte), MDR, IR, and AC registers are 8-bit wide, and PC and MAR registers are
16-bit wide. Also, assume Internal Data Bus is 16-bit wide and thus can handle
8-bit or 16-bit (as well as portion of 8-bit or 16-bit) transfers in one
microoperation and only PC and AC have the capability to increment itself.

0 0 00000000
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001
10 a 00001010
11 b 00001011
12 c 00001100
13 d 00001101
14 e 00001110
15 f 00001111
16 10 00010000

ICALL
; Fetch cycle
Step 1: MAR ← PC;
Step 2: MDR ← M(MAR), PC ← PC+1 ; Get the high byte of the
instruction and increment PC
Step 3: IR(15...8) ← MDR
Step 4: MAR ← PC;
Step 5: MDR ← M(MAR), PC ← PC+1 ; Get the low byte of the
instruction and increment PC
Step 6: IR(7...0) ← MDR ; At this point, CU knows this is an ICALL;
Execute cycle
; The return address is pushed onto the stack
Step 7: MDR ← PC(7...0)
Step 8: MAR ← SP
Step 9: M(MAR) ← MDR, SP ← SP-1 ; Push the lower byte of return
address onto stack
Step 10: MDR ← PC(15...8)
Step 11: MAR ← SP
Step 12: M(MAR) ← MDR, SP ← SP-1 ; Push the higher byte of
return address onto stack
: Put H and L target addresses of the Z register to the PC
Step 13: PC(15...8) ← R31 ; Put the H address of the target into PC
Step 14: PC(7...0) ← R30 ; Put the L address of the target into PC

Consider the internal structure of the pseudo-CPU discussed in class augmented
with a single-port register file (i.e., only one register value can be read at a time)
containing 32 8-bit registers (R0-R31) and a Stack Pointer (SP). Suppose the
pseudo-CPU can be used to implement the AVR instruction ICALL (Indirect Call
to Subroutine) ICALL pushes the return address onto the stack and jumps to the
16-bit target address contained in the Z register. Give the sequence of
microoperations required to Fetch and Execute AVR’s ICALL instruction. Your
solutions should result in exactly 6 cycles for the fetch cycle and 8 cycles for the
execute cycle. Assume the memory is organized into addressable bytes (i.e.,
each memory word is a byte), MDR register is 8-bit wide, and SP, PC, IR, and
MAR are 16-bit wide. Also, assume Internal Data Bus is 16-bit wide and thus can
handle 8-bit or 16-bit (as well as portion of 8-bit or 16-bit) transfers in one
microoperation and SP has the capability to increment/decrement itself. Clearly
state any other assumptions made.

Assembler Directives
ORG: Tells the assembler where to put the instructions that follow
it.
.ORG 0x37
EXIT: Tells the assembler to stop assembling the file
EQU: Assigns a value to a label.
Syntax: .EQU label = expression
.EQU io_offset = 0x23
BYTE: Reserves memory in data memory
Syntax: label: .BYTE expression
var: .BYTE 1
DB: Allows arbitrary bytes to be placed in the code.
Syntax: label: .DB expressionlist
consts: .DB 0, 255, 0b01010101, -128, 0xaa
Text: .DB “This is a text.”
DW: Allows 16-bit words to be placed into the code
Syntax: label: .DW expressionlist
varlist: .DW 0,0xffff,0b1001110001010101,-32768,65535
INCLUDE: Tells the assembler to read from the specified file.
Syntax: .INCLUDE filename
.INCLUDE “m128def.inc”

Write an AVR assembly code that waits for 1 sec using the
8-bit Timer/Counter0 with the system clock
frequency of 16 MHz operating under Normal mode. This is
done by doing the following:
(1) Timer/Counter0 is initialized to count for 10 ms and then
interrupts on an overflow;
(2) The main part of the program simply loops, and for each
iteration, a check is made to see if the loop has
reach 100 iterations; and
(3) On each interrupt, Timer/Counter0 is reloaded to interrupt
again in 10 ms.
The first thing that needs to be done is to calculate the value
to be loaded onto Timer/Counter1. This is done by evaluating
the following equation: value = 255 – (10 ms/(prescale x 62.5
ns)) = 255 – (16,000,000/prescale) We want to use a prescale
value that would lead to the highest resolution (i.e., lowest
prescale value) and yet satisfy the above equation, thus
prescale = 1024. This leads to value = 99. Obviously, there
are many ways to write this code, but here is one possibility:
.include “m128def.inc”
.def mpr = r16
.def counter = r17
…
.ORG $0000
RJMP Initialize
.ORG $0020 ; Timer/Counter0 overflow interrupt
vector
RCALL Reload_counter
RETI
.ORG $0046 ; End of interrupt vectors
Initialize:
LDI mpr, 0b00000100 ; Enable interrupt on
Timer/Counter0 overflow
OUT TIMSK, mpr
SEI ; Enable global interrupt
LDI mpr, 0b00000111 ; Set prescalar to 1024
OUT TCCR0, mpr ;
LDI mpr, 99 ; Load the value for delay
OUT TCNT0, mpr ;
LDI counter, 100 ; Set timer
LOOP:
CPI counter, 0 ; Repeat for 100 times
BRNE LOOP
…
Reload_counter:
PUSH mpr
LDI mpr, 16 ;
OUT TCNT0, mpr ; Load the value for delay
DEC counter
POP mpr
RET
The initialization part of the code first enables Timer/Counter0
overflow interrupt and the global interrupt. Then, the prescalar
is set to 1024, i.e., CS02 = 1, CS01 = 1, and CS00 = 1. Note
that the Normal mode of operation does not have to be
explicitly configured since the Waveform Generation Mode bits
are all 0s at reset, i.e., WGM13-10 = 0000 (Normal mode).
The next part sets the Timer/Counter0 to value = 99. Once the
Timer/Counter0 is set, the program enters a loop waiting for a
Timer/Counter0 overflow interrupt to occur. In addition,
counter is checked to see if it has reached zero. Finally, the
Reload_counter routine decrements the counter, reloads the
value, and returns.

Consider the AVR code segment shown below that initializes and
handles interrupts. Descriptions of Data Directional Register (DDRx),
External Interrupt Control Registers (EICRA & EICRB), and External
Interrupt Mask Register (EIMSK) are given on the following page.
(a) Explain in words what the code accomplishes when it is executed.
That is, explain what it does and how it does it. - This code reads an 8-bit
value latched on to Port A when an interrupt occurs from INT0. It then
stores it to memory starting at address DATA then increments a count,
which will be stored in memory location at CTR.
(b) Write and explain the interrupt initialization code (lines (1)-(7))
necessary to make the interrupt service routine (starting at ISR:) work
properly. More specifically,
.include “m128def.inc”
.def mpr = r16 ; Multi-purpose register
.def count = r17 ; Assume R17 is initially 0
.ORG $0000
START: RJMP INIT
.ORG $0002
RCALL ISR
RETI
INIT: LDI mpr, 0b00000011 ; Sets Input Sense Control
for pin INT0
STS EICRA, mpr ; to detect an interrupt on a rising
edge
LDI mpr, 0b00000001 ; Enables interrupt for pin INT0
OUT EIMSK, mpr ;
LDI mpr, $00 ; Set Port A Direction Register for input
OUT DDRA, mpr ;
SEI ; Turn on interrupts
LDI XH, high(CTR)
LDI XL, low(CTR)
LDI YH, high(DATA)
LDI YL, low(DATA)
WAIT: RJMP WAIT
.ORG 0x100F
ISR: IN mpr, PINA
ST Y+, mpr
INC count
ST X, count
RET
.DSEG
CTR: .BYTE 1
DATA: .BYTE 256

Write a subroutine initUSART1 to configure ATmega128 USART1 to operate as a
transmitter and sends a data every time USART1 Data Register Empty interrupt occurs.
The transmitter operates with he following settings: 8 data bits, 2 stop bits, and even parity,
9,600 Baud rate, Transmitter enabled, Normal asynchronous mode operation, Interrupt
enabled, Assume the system clock is 16 MHz. The skeleton code is shown below:
There are many ways to write this code but here is one possible code for initUSART1.
initUSART1:
; Port D set up – pin3 output
ldi mpr, 0b00001000 ; Configure USART1 (Port D, pin 3)
out DDRD, mpr ; Set pin direction to output
; Set Baud rate
ldi mpr, 103 ; Set baud rate to 9,600 with f = 16 MHz
sts UBRR1L, mpr ; UBRR1H already initialized to $00
; Enable transmitter and interrupt
ldi mpr, (1<<TXEN1|1<<UDRIE1) ; Enable Transmitter and interrupt
sts UCSR1B, mpr
; Set asynchronous mode and frame format
ldi mpr, (1<<USBS1|1<<UPM11|1<<UCSZ11|1<<UCSZ10)
sts UCSR1C, mpr ; UCSR1C in extended I/O space, use sts
ret
The first two instructions configure Pin 3, Port D for output since the USART1 is acting as a
transmitter. The next two instructions set the Baud rate. This is done by calculating the
UBRR value, which is (16MHz/(16x9600))-1 = 103, and then writing it into the UBRR1L
register. The UBRR1H register was not written to since upper byte is $00. The next two
instructions enable the transmitter and the interrupt, which is done by setting the 3rd-bit
(i.e., TXEN1) and the 5th-bit (i.e., UDRIE1) of UCSR1B. The next pair of instructions sets it
to the asynchronous mode, which is done by setting the 6th bit (i.e., UMSEL1) of UCSR1C
to 0. Note that 0<<UMSEL1 is not necessary since it is already initialized to 0 on reset.
This is also the case for 0<<UCSZ12 and 0<<UPM10. The frame format with 8 data bits, 2
stop bits, and even parity is set by selecting UCSZ12:0 to be 011, UPM11:0 to be 10, and
USBS1 to 1. These bits are configured using
(1<<USBS1|1<<UPM11|0<<UPM10|0<<UCSZ12|1<<UCSZ11|1<<UCSZ10) Also note that
sts is used because UCSR1C is in the extended I/O space. Here is a possible code for
SendData, which is called when USART1 Data Register Empty interrupt occurs.
SendData:
ld r17, X+ : Assume X points to the data to be transmitted
sts UDR1, r17 ; Move data to Transmit Data Buffer
Ret

Consider the AVR code segment shown below that initializes I/O and interrupts for Tekbot
shown below.
.include “m128def.inc”
.def mpr = r16
.org $0000
rjmp INIT
…
INIT: ldi mpr, 0b00001111 (1) ; Set DDRA to control engine
out DDRA, mpr (2) ;
ldi mpr, 0b00000000 (3) ; Set DDRD to detect whiskers
out DDRD, mpr (4) ;
ldi mpr, 0b00000011 (5) ; Enable pull-up resisters for L/R whiskers
out PORTD, mpr (6) ;
ldi mpr, 0b00001010 (7) ; Set EICR to detect on falling edge
sts EICRA, mpr (8) ;
ldi mpr, 0b00000011 (9) ; Set EIMSK
out EIMSK, mpr (10) ;
sei ; Turn on interrupts

