
ECE 472 Homework 2

Drake Vidkjer

October 30, 2017

1 Part 1: Implement frexp function

Reflection For part 1, I was moving pretty smoothly through the imple-
mentation until I got to calculating the fraction. The only problem I had
before this was trying to figure out how I wanted to represent the double in
order to perform bit sifts and masking on it. I tried using a union but decided
it was a little clunky for that purpose, so I ended up using a long by initial-
izing it with a point that pointed to the same memory as the double. This
was simple, especially since there was only two variables. Once I got that out
of the way the next problem was the mantissa/fraction. I remembered from
class that the way frexp returns the fraction is only half of the IEEE 754
standard. I was also having trouble figuring out how to convert the mantissa
stored in binary into something useful. I then started to think about it a
little more and realized that I could shift the binary point by multiplying by
2 , because it is a base to system, same as you can shift a decimal point my
multiplying by 10. This really helped and I was finally able to figure out how
to interpret the value of the mantissa.

2 Part 2: Floating point operations

Reflection I had a very difficult time trying to work on an implementation
of floating point arithmetic in C. I am an EE major, so software is not my
strongest skill. I was able to somewhat get an addition operation going,
though it does not calculate the correct value. I did set it up against the fpu
to test if it was slower, and it was noticeably slower than the floating point
unit. I would imagine that this difference in time would only increase with

1



more complex operations. The way I attempted to implement addition was
to find the difference between the exponents of the two values, then shift the
smaller value so the exponents lined up, then add the mantissas of the two
exponents. If I had more knowledge, I would have also added an overflow
so that if the resulting mantissa was more then 53 bits, then the exponent
would be increased. Anyways, once the mantissa was added, then the floating
point number could be reassembled by combining the mantissa and exponent
shifted to the correct positions.

3 Part 3: Feature extraction

Reflection For this part I ended up using a union like the assignment
suggested. I had already tried using it a little in part 1, so I already knew
a little about how to set it up. A union basically sets up a number of
variables so that they all share the same memory space. A union is meant to
help conserve memory by using a single memory space for multiple variables,
though in this instance I used it for an unintended purpose. There’s a few
lines near the beginning that give the user the chance to hard code some
values in.

References

[1] https://ryanstutorials.net/binary-tutorial/binary-floating-point.php

[2] http://www.cplusplus.com/reference/cmath/frexp/

[3] https://en.wikipedia.org/wiki/Double-precision_floating-point_format

[4] https://stackoverflow.com/questions/34558621/get-the-sign-mantissa-
and-exponent-of-a-floating-point-number

[5] https://stackoverflow.com/questions/15685181/how-to-get-the-sign-
mantissa-and-exponent-of-a-floating-point-number

2


