
ECE 472 Homework 3

Drake Vidkjer

November 21, 2017

1 Part 1: Create a document with answers

for the following

For a 4KB page, and a 32 bit address space, calculate the amount of
memory needed to store a process’s page tables. Assume each entry
in the page table requires 10 bytes. Show all calculations. 4KB
page means 212, 32 bit address means 232 so page table size = (232/212) ∗ 10
= 10MB.

For a 4KB page, and a 64 bit address space, calculate the amount of
memory needed to store a process’s page tables. Assume each entry
in the page table requires 10 bytes. Show all calculations. 4KB
page means 212, 32 bit address means 264 so page table size = (264/212) ∗ 10
= 45035.99TB.

For a 8KB page, and a 32 bit address space, calculate the amount of
memory needed to store a process’s page tables. Assume each entry
in the page table requires 10 bytes. Show all calculations. 4KB
page means 213, 32 bit address means 232 so page table size = (232/213) ∗ 10
= 5.24MB.

For a 8KB page, and a 64 bit address space, calculate the amount of
memory needed to store a process’s page tables. Assume each entry
in the page table requires 10 bytes. Show all calculations. 4KB
page means 213, 32 bit address means 264 so page table size = (264/213) ∗ 10
= 22517.99TB.

1



Describe the concept of pipelining, and why it is useful. Pipelining
is the process of somewhat parallelising the tasks performed by a CPU. With-
out pipelining, a CPU pulls an instruction from memory, then executes it all
the way through, then pulls the next one from memory. Whith pipelining,
the CPU pulls the instruction from memory, then as it starts executing the
instruction, it pulls the next one from memory as well. and it continues to do
this so that each component insited the CPU, is working on an instruction.
This helps to allow the CPU to perform more tasks quicker, as it doesnt have
to wait for a process to be completed before moving on to the next task.

Describe the IA-32e paging structure, in detail. IA-32e Paging works
to translate linear address using paging structures. It works to translate 48-
bit linear address to 52-bit physical address allowing for 256TB of linear
address space to be used at one time. IA-32e paging uses a hierarchy of
paging structures to translate address, and the first page structure is located
using CR3. IA-32e can map linear addresses to 4KB, 2MB, or 1Gb pages
depending on settings. The way IA-32e paging works is the same as other
paging methods discussed in class. When attempting to translate a linear
address used by a program to a physical address, the computer starts by
looking at the first page in the series, for instance on linux called the page
global directory, it then finds the correct entry which is representative of
another page table, which the computer then goes to and looks in there for
the next needed entry, it then does this all a third time in the page table
entry and finds the correct entry. This is then representative of the physical
address that is needing to be translated.

2 Part 2: Please write a short summary of

each paper.

Memory Optimization The powerpoint, Memory Optimization, discusses
how to optimize program by using processor cache. It talks about the pros
and cons of using cache, including the three Cs and three Rs. The powerpoint
goes on to talk about details of how to increase cache optimization by using
decreased size to increase simplicity, and keeping in mind locality when link-
ing during the compiling process. It also encourages monolithic functions and
discourages OOP as it is less cache friendly. The presentation then goes on

2



ti give code examples of preloading/prefetching as well as analysis of caching
performance and tree structures. Throughout the whole presentation, it talks
about aliasing and how to avoid it. This includes multiple references to the
same storage location, or missing optimization opportunities.

What Every Programmer Should Know About Memory The sec-
ond of the two articles discusses the basics of pages and how they are im-
plemented. It first talks about a simple paging example with a single page
file that translates virtual to physical address. It talks about how this is not
a practical implementations, as each page file has to generally be 4MB in
size for each process, tying up a large amount of main memory just for page
tables. The document then goes on to discuss a better way of doing pages,
that is to have a page hierarchy. It discusses how this allows the different
levels to be sparse and compact leading to less memory usage. On most sys-
tems the page hierarchy is either 4 or 3 levels, and on most x86 and x86-64
machines the process that utilizes these hierarchies, called page tree walking
is done at the hardware level.

3 Part 3: Implement some C code to calcu-

late the cache sizes of any arbitrary proces-

sor.

Reflection It took me a while to think about how to impliment this, and
at first I was a little lost. But after reading the documents a little more, and
doing some more research I ended up deciding to impliment this using access
timing. Doing this tests the time it takes for a program to step through an
array. The step size is fixed but the array size changes. One way to use
this information to decide the cache size is to average the step time, and see
when the average starts to change. I was originally going to measure the
individual step time, but it was too quick, so I decided to instead average
the step time and increment the array size to the signal to noise ratio will
be lower. I was going to have it check for when the access times started to
get larger, but I decided it would be better ot have the user do this, as it
will be more accurate. So to find the cache size, you look at the step times,
and when they start to get larger than the previous times, you know that
the number of bytes that were stepped through the array is the size of the

3



cache.

4 Part 4: Modify the code so that it uses byte

swapping and compiler directive to trans-

form the code to be endian-neutral.

Reflection This implementation of endian neutralness is fairly easy, as it
just relies on a compiler if/else statement to determine what endianess a
system has and then compile only the relevant code for that system. In my
opinion this is probably the cleanest way to implement endian neutralness,
though it is a little more involved as youre basically writing two separate
programs and then have to make sure compatibility between the two as well.
But in this example, it is quick and easy.

5 Part 5: Modify the program from part 4

to use byte swapping and a runtime test

(instead of compiler directive) to test for

the endianness of the system that the code

is running on.

Reflection I actually came up with this idea as the way to test endianness
while implementing the first endian neutral code. I decided that I could test
if it initializes the variable correctly assuming one endianness, and if that
assumption is correct, then that means that the system follows that assumed
endianness. It gives a little bit of overhead, especially with respect to this
program because it is so large, but for a really large program, it would be a
very small thing.

References

[1] https://stackoverflow.com/questions/16323890/calculating-page-table-size

4



[2] https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

[3] http://www.it.uu.se/edu/course/homepage/avdark/ht11/slides/11_Memory_and_optimization-1.pdf

[4] http://www.akkadia.org/drepper/cpumemory.pdf

[5] http://realtimecollisiondetection.net/pubs/GDC03_Ericson_Memory_Optimization.ppt

[6] https://stackoverflow.com/questions/8978935/detecting-endianness

5


